Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Ergon ; 117: 104249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368655

RESUMO

Slippery surfaces due to oil spills pose a significant risk in various environments, including industrial workplaces, kitchens, garages, and outdoor areas. These situations can lead to accidents and falls, resulting in injuries that range from minor bruises to severe fractures or head trauma. To mitigate such risks, the use of slip resistant footwear plays a crucial role. In this study, we aimed to develop an Artificial Intelligence model capable of classifying footwear as having either high or low slip resistance based on the geometric characteristics and material parameters of their outsoles. Our model was trained on a unique dataset comprising images of 37 indoor work footwear outsoles made of rubber. To evaluate the slip resistant property of the footwear, all samples were tested using a cart-type friction measurement device, and the static and dynamic Coefficient of Frictions (COFs) of each outsole was determined on a glycerol-contaminated surface. Machine learning techniques were implemented, and a classification model was developed to determine high and low slip resistant footwear. Among the various models evaluated, the Support Vector Classifier (SVC) obtained the best results. This model achieved an accuracy of 0.68 ± 0.15 and an F1-score of 0.68 ± 0.20. Our results indicate that the proposed model effectively yet modestly identified outsoles with high and low slip resistance. This model is the first step in developing a model that footwear manufacturers can utilize to enhance product quality and reduce slip and fall incidents.


Assuntos
Inteligência Artificial , Glicerol , Humanos , Projetos Piloto , Sapatos , Desenho de Equipamento , Fricção , Aprendizado de Máquina , Pisos e Cobertura de Pisos
2.
Appl Ergon ; 99: 103611, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34768227

RESUMO

Falls on icy surfaces are among the top causes of injuries for workers exposed to the outdoor environment. Our recent field study showed that a new generation of winter footwear incorporating composite outsoles was able to reduce slips and falls on icy surfaces by 68% and 78%, respectively. The widespread adoption of this type of footwear may lead to substantial reductions in pain, suffering and costs of fall-related injuries. However, these composite materials are sensitive to wear and abrasion, which makes it likely that their slip-resistance performance may degrade with use. The goal of this pilot study was to determine the extent to which the slip-resistance of two types of winter footwear with composite outsoles changed as they wore down with real-world use. Seven participants were recruited for this study and were asked to walk 100K steps with their assigned footwear. Tread depth and slip-resistance performance (using the Maximum Achievable Angle test) were measured at baseline and again after each 25K-step interval up to 100K. Our results showed that the slip-resistance performance of the test footwear dropped significantly after the 75K and 100K step intervals compared to baseline. In addition, significant changes in tread depth were found after only 25K steps. These findings indicate that the performance of this type of footwear degrades relatively quickly with real-world use. Therefore, larger scale study of the slip-resistance of winter footwear with composite outsoles is needed and members of the public should be made aware of the potential loss of slip-resistance of these products.


Assuntos
Gelo , Sapatos , Acidentes por Quedas/prevenção & controle , Humanos , Projetos Piloto , Caminhada
3.
IEEE J Biomed Health Inform ; 20(3): 733-747, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26208371

RESUMO

Respiratory disorder is a highly prevalent condition associated with many adverse health problems. As the current means of diagnosis are obtrusive and ill-suited for real-time m-health applications, we explore a convenient and low-cost automatic approach that uses wearable microelectromechanical system sensor technology. The proposed system introduces the use of motion sensors to detect the changes in the anterior-posterior diameter of the chest wall during breathing function as well as extracting the informative respiratory features to be used for breathing disorders classification. Extensive evaluations are provided on six well-known classifiers with novel feature extraction techniques to distinguish among eight different pathological breathing patterns. The effects of the number of sensors, sensor placement, as well as feature selection on the classification performance are discussed. The experimental results conducted with ten subjects show the best accuracy rates of 97.50% by support vector machine and 97.37% with decision tree bagging (DTB) with all features and after feature selection, correspondingly. Furthermore, a binary classification is proposed for distinguishing between healthy people and patients with breath problems. The different assessments of classification parameters are provided by measuring the accuracy, sensitivity, specificity, F1-score and Mathew correlation coefficient. The accuracy rates above 98% suggest superior performance of DTB in binary recognition supported by the suggested new features.


Assuntos
Monitorização Ambulatorial/métodos , Transtornos Respiratórios/diagnóstico , Telemedicina/métodos , Abdome/fisiologia , Acelerometria/instrumentação , Algoritmos , Árvores de Decisões , Humanos , Monitorização Ambulatorial/instrumentação , Respiração , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Tórax/fisiologia
4.
IEEE J Biomed Health Inform ; 19(5): 1532-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26087508

RESUMO

A reliable long-term monitoring and diagnosis of breath disorders at an early stage provides an improvement of medical act, life expectancy, and quality of life while decreasing the costs of treatment and medical services. Therefore, a real-time unobtrusive monitoring of respiration patterns, as well as breath parameters, is a critical need in medical applications. In this paper, we propose an intelligent system for patient home care, capable of measuring respiration rate and tidal volume variability via a wearable sensing technology. The proposed system is designed particularly for the goal of diagnosis and treatment in patients with pathological breathing, e.g., respiratory complications after surgery or sleep disorders. The complete system was comprised of wearable calibrated accelerometer sensor, Bluetooth low energy, and cloud database. The experiments are conducted with eight subjects and the overall error in respiration rate calculation is obtained 0.29%±0.33% considering SPR-BTA spirometer as the reference. We also introduce a method for tidal volume variability estimation while validated using Pearson correlation. Furthermore, since it is essential to detect the critical events resulted from sudden rise or fall in per breath tidal volume of the patients, we provide a technique to automatically find the accurate threshold values based on each individual breath characteristics. Therefore, the system is able to detect the major changes, precisely by more than 98%, and provide immediate feedback such as sound alarm for round-the-clock respiration monitoring.


Assuntos
Informática Médica/métodos , Tecnologia de Sensoriamento Remoto/métodos , Telemedicina/métodos , Volume de Ventilação Pulmonar , Adolescente , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Adulto Jovem
5.
Sensors (Basel) ; 14(6): 11204-24, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24961214

RESUMO

The measurement of human respiratory signals is crucial in cyberbiological systems. A disordered breathing pattern can be the first symptom of different physiological, mechanical, or psychological dysfunctions. Therefore, a real-time monitoring of the respiration patterns, as well as respiration rate is a critical need in medical applications. There are several methods for respiration rate measurement. However, despite their accuracy, these methods are expensive and could not be integrated in a body sensor network. In this work, we present a real-time cloud-based platform for both monitoring the respiration rate and breath pattern classification, remotely. The proposed system is designed particularly for patients with breathing problems (e.g., respiratory complications after surgery) or sleep disorders. Our system includes calibrated accelerometer sensor, Bluetooth Low Energy (BLE) and cloud-computing model. We also suggest a procedure to improve the accuracy of respiration rate for patients at rest positions. The overall error in the respiration rate calculation is obtained 0.53% considering SPR-BTA spirometer as the reference. Five types of respiration disorders, Bradapnea, Tachypnea, Cheyn-stokes, Kaussmal, and Biot's breathing are classified based on hierarchical Support Vector Machine (SVM) with seven different features. We have evaluated the performance of the proposed classification while it is individualized to every subject (case 1) as well as considering all subjects (case 2). Since the selection of kernel function is a key factor to decide SVM's performance, in this paper three different kernel functions are evaluated. The experiments are conducted with 11 subjects and the average accuracy of 94.52% for case 1 and the accuracy of 81.29% for case 2 are achieved based on Radial Basis Function (RBF). Finally, a performance evaluation has been done for normal and impaired subjects considering sensitivity, specificity and G-mean parameters of different kernel functions.


Assuntos
Acelerometria/métodos , Diagnóstico por Computador/métodos , Internet , Transtornos Respiratórios/diagnóstico , Taxa Respiratória , Telemedicina/instrumentação , Telemedicina/métodos , Acelerometria/instrumentação , Inteligência Artificial , Diagnóstico por Computador/instrumentação , Humanos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Transtornos Respiratórios/fisiopatologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...